Saturday, January 28, 2012

Genesis for Engineers

Technology has come a long way since Australopithecus first bruised their fingers chipping flint to make knives and scrapers. We are blessed to fruitfully multiply, to fill the world and to master it (Genesis 1:28). And indeed the trend of technological history is towards increasing mastery over our world. Inventors deliberately invent, but many inventions are useless or even harmful. Why is there progress and how certain is the process? Part of the answer is that good ideas catch on and bad ones get weeded out. Reality, however, is more complicated: what is 'good' or 'bad' is not always clear; unintended consequences cannot be predicted; and some ideas get lost while others get entrenched. Mastering the darkness and chaos of creation is a huge engineering challenge. But more than that, progress is painful and uncertain and the challenge is not only technological.

An example of the weeding-out process, by which our mastery improves, comes to us in Hammurabi's code of law from 38 centuries ago:

"If a builder build a house for some one, and does not construct it properly, and the house which he built fall in and kill its owner, then that builder shall be put to death. If it kill the son of the owner the son of that builder shall be put to death." (Articles 229-230)

Builders who use inferior techniques, or who act irresponsibly, will be ruthlessly removed. Hammurabi's law doesn't say what techniques to use; it is a mechanism for selecting among techniques. As the level of competence rises and the rate of building collapse decreases, the law remains the same, implicitly demanding better performance after each improvement.

Hammurabi's law establishes negative incentives that weed out faulty technologies. In contrast, positive incentives can induce beneficial invention. John Harrison (1693-1776) worked for years developing a clock for accurate navigation at sea, motivated by the Royal Society's 20,000 pound prize.

Organizations, mores, laws and other institutions explain a major part of how good ideas catch on and how bad ones are abandoned. But good ideas can get lost as well. Jared Diamond relates that bow and arrow technologies emerged and then disappeared from pre-historic Australian cultures. Aboriginal mastery of the environment went up and then down. The mechanisms or institutions for selecting better tools do not always exist or operate.

Valuable technologies can be "side-lined" as well, despite apparent advantages. The CANDU nuclear reactor technology, for instance, uses natural Uranium. No isotope enrichment is needed, so its fuel cycle is disconnected from Uranium enrichment for military applications (atom bombs use highly enriched Uranium or Plutonium). CANDU's two main technological competitors - pressurized and boiling water reactors - use isotope-enriched fuel. Nuclear experts argue long (and loud) about the merits of various technologies, but no "major" or "serious" accidents (INES levels 6 or 7) have occurred with CANDU reactors but have with PWRs or BWRs. Nonetheless, the CANDU is a minor contributor to world nuclear power.

The long-run improvement of technology depends on incentives created by attitudes, organizations and institutions, like the Royal Society and the law. Technology modifies those attitudes and institutions, creating an interactive process whereby society influences technological development, and technology alters society. The main uncertainty in technological progress arises from unintended impacts of technology on mores, values and society as a whole. An example will make the point.

Early mechanical clocks summoned the faithful to prayer in medieval monasteries. But technological innovations may be used for generations without anyone realizing their full implications, and so it was with the clock. The long-range influence of the mechanical clock on western civilization was the idea of "time discipline as opposed to time obedience. One can ... use public clocks to summon people for one purpose or another; but that is not punctuality. Punctuality comes from within, not from without. It is the mechanical clock that made possible, for better or for worse, a civilization attentive to the passage of time, hence to productivity and performance." (Landes, p.7)

Unintended consequences of technology - what economists called "externalities" - can be beneficial or harmful. The unintended internalization of punctuality is beneficial (maybe). The clock example illustrates how our values gradually and unexpectedly change as a result of technological innovation. Environmental pollution and adverse climate change are harmful, even when they result from manufacturing beneficial consumer goods. Attitudes towards technological progress are beginning to change in response to perceptions of technologically-induced climate change. Pollution and climate change may someday seriously disrupt the technology-using societies that produced them. This disruption may occur either by altering social values, or by adverse material impacts, or both.

Progress occurs in historical and institutional context. Hammurabi's Code created incentives for technological change; monastic life created needs for technological solutions. Progress is uncertain because we cannot know what will be invented, and whether it will be beneficial or harmful. Moreover, inventions will change our attitudes and institutions, and thus change the process of invention itself, in ways that we cannot anticipate. The scientific engineer must dispel the "darkness over the deep" (Genesis 1:2) because mastery comes from enlightenment. But in doing so we change both the world and ourselves. The unknown is not only over "the waters" but also in ourselves.


  1. I have been including "externalities" in my research projects for more than a decade now. They are the "external costs" that 99% of engineers do not include in their comparisons between alternative solutions, and excluding them produces gross unfairness against the greener, cleaner solutions.

    For example, Europe has been spending over $450 million in the last two decades to develop Short sea Shipping along its coasts in order to relieve its congested highways by taking as much of their slow-moving cargo and shifting it to the short-sea ships. The US by comparison woke up only very lately and have invested less than 1% of what the Euros have in this sector.

    This aside, when we compare a fleet of tucks or a train vs a short sea ship, and I and my co-workers have, and evaluate JUST the INTERNAL costs, the worst (environmentally) mode of transport usually has much lower internal costs, BUT if you add, as you should, the externalities, the total cost is far higher for that same worst mode (usually Trucks). Therefore the state should compensate short-sea owners, even if the state is correctly opposed to protectionism, subsidies and all these econ illiterate measures, just for the sake of fairness.

  2. "Hammurabi's code of law from 38 centuries ago:

    "If a builder build a house for some one, and does not construct it properly, and the house which he built fall in and kill its owner, then that builder shall be put to death. If it kill the son of the owner the son of that builder shall be put to death." (Articles 229-230)"

    These laws are generally considered harsh and a deterrent to criminals, but if you look closely at the above, are they really? From the point of view of the homeowner, he paid for his new home, it fell on his head and killed him, they killed the "builder" (is this the owner of the building company, or could they kill a lowly worker or even a slave who participated at the building of the house instead?) Regardless, even if the owner of the building company himself is put to death, this does not contribute even by 1% to the rebuilding of the fallen home. And the homeowner's family would be justified to fear rebuilding the home using the same schlemiels that built the one that fell apart. Seems like the owner should be additionally compensated by having it rebuilt for free by a different, competent builder!

  3. It seems rather unusual to me, to look for 'good' or 'bad' in reality just like that, without comparison to what we trusted, expected, presumed, predicted, believed or intended. If the end sanctifies the means, then at least the end must be good. We strive for a good outcome and measure or value it in those terms.

    There is success, when newly invented structures (clocks, bows and arrows) can handle greater forces than the old ones, so there is always that comparison, but the functional structure at the top level (religion) dominates or sanctifies all others, if those values are shared by people involved directly or indirectly.