Monday, December 19, 2011

Jabberwocky. Or: Grand Unified Theory of Uncertainty???

Jabberwocky, Lewis Carroll's whimsical nonsense poem, uses made-up words to create an atmosphere and to tell a story. "Billig", "frumious", "vorpal" and "uffish" have no lexical meaning, but they could have. The poem demonstrates that the realm of imagination exceeds the bounds of reality just as the set of possible words and meanings exceeds its real lexical counterpart.

Uncertainty thrives in the realm of imagination, incongruity, and contradiction. Uncertainty falls in the realm of science fiction as much as in the realm of science. People have struggled with uncertainty for ages and many theories of uncertainty have appeared over time. How many uncertainty theories do we need? Lots, and forever. Would we say that of physics? No, at least not forever.

Can you think inconsistent, incoherent, or erroneous thoughts? I can. (I do it quite often, usually without noticing.) For those unaccustomed to thinking incongruous thoughts, and who need a bit of help to get started, I can recommend thinking of "two meanings packed into one word like a portmanteau," like 'fuming' and 'furious' to get 'frumious' or 'snake' and 'shark' to get 'snark'.

Portmanteau words are a start. Our task now is portmanteau thoughts. Take for instance the idea of a 'thingk':

When I think a thing I've thought,
I have often felt I ought
To call this thing I think a "Thingk",
Which ought to save a lot of ink.

The participle is written "thingking",
(Which is where we save on inking,)
Because "thingking" says in just one word:
"Thinking of a thought thing." Absurd!

All this shows high-power abstraction.
(That highly touted human contraption.)
Using symbols with subtle feint,
To stand for something which they ain't.

Now that wasn't difficult: two thoughts at once. Now let those thoughts be contradictory. To use a prosaic example: thinking the unthinkable, which I suppose is 'unthingkable'. There! You did it. You are on your way to a rich and full life of thinking incongruities, fallacies and contradictions. We can hold in our minds thoughts of 4-sided triangles, parallel lines that intersect, and endless other seeming impossibilities from super-girls like Pippi Longstockings to life on Mars (some of which may actually be true, or at least possible).

Scientists, logicians, and saints are in the business of dispelling all such incongruities, errors and contradictions. Banishing inconsistency is possible in science because (or if) there is only one coherent world. Belief in one coherent world and one grand unified theory is the modern secular version of the ancient monotheistic intuition of one universal God (in which saints tend to believe). Uncertainty thrives in the realm in which scientists and saints have not yet completed their tasks (perhaps because they are incompletable). For instance, we must entertain a wide range of conflicting conceptions when we do not yet know how (or whether) quantum mechanics can be reconciled with general relativity, or Pippi's strength reconciled with the limitations of physiology. As Henry Adams wrote:

"Images are not arguments, rarely even lead to proof, but the mind craves them, and, of late more than ever, the keenest experimenters find twenty images better than one, especially if contradictory; since the human mind has already learned to deal in contradictions."

The very idea of a rigorously logical theory of uncertainty is startling and implausible because the realm of the uncertain is inherently incoherent and contradictory. Indeed, the first uncertainty theory - probability - emerged many centuries after the invention of the axiomatic method in mathematics. Today we have many theories of uncertainty: probability, imprecise probability, information theory, generalized information theory, fuzzy logic, Dempster-Shafer theory, info-gap theory, and more (the list is a bit uncertain). Why such a long and diverse list? It seems that in constructing a logically consistent theory of the logically inconsistent domain of uncertainty, one cannot capture the whole beast all at once (though I'm uncertain about this).

A theory, in order to be scientific, must exclude something. A scientific theory makes statements such as "This happens; that doesn't happen." Karl Popper explained that a scientific theory must contain statements that are at risk of being wrong, statements that could be falsified. Deborah Mayo demonstrated how science grows by discovering and recovering from error.

The realm of uncertainty contains contradictions (ostensible or real) such as the pair of statements: "Nine year old girls can lift horses" and "Muscle fiber generates tension through the action of actin and myosin cross-bridge cycling". A logically consistent theory of uncertainty can handle improbabilities, as can scientific theories like quantum mechanics. But a logical theory cannot encompass outright contradictions. Science investigates a domain: the natural and physical worlds. Those worlds, by virtue of their existence, are perhaps coherent in a way that can be reflected in a unified logical theory. Theories of uncertainty are directed at a larger domain: the natural and physical worlds and all imaginable (and unimaginable) other worlds. That larger domain is definitely not coherent, and a unified logical theory would seem to be unattainable. Hence many theories of uncertainty are needed.

Scientific theories are good to have, and we do well to encourage the scientists. But it is a mistake to think that the scientific paradigm is suitable to all domains, in particular, to the study of uncertainty. Logic is a powerful tool and the axiomatic method assures the logical consistency of a theory. For instance, Leonard Savage argued that personal probability is a "code of consistency" for choosing one's behavior. Jim March compares the rigorous logic of mathematical theories of decision to strict religious morality. Consistency between values and actions is commendable says March, but he notes that one sometimes needs to deviate from perfect morality. While "[s]tandard notions of intelligent choice are theories of strict morality ... saints are a luxury to be encouraged only in small numbers." Logical consistency is a merit of any single theory, including a theory of uncertainty. However, insisting that the same logical consistency apply over the entire domain of uncertainty is like asking reality and saintliness to make peace.


  1. Science considers same words with different meanings as challenging as different words with same meanings, no matter if they are said or written as one. So outside of the box thinking may be as much part of science as it may seem to not be. I believe that reusing concepts or words in different contexts, 'linking pins' those contexts together in the end, as one unified theory, perhaps initially only as Reichenbach's context of discovery but then, sooner or later, as his context of justification. (And my philosophy application software does just that. Sorry for bragging.)

  2. "Billig", "frumious", "vorpal" and "uffish" have no lexical meaning"

    In English, maybe. But "billig" is a very common German adjective meaning "inexpensive". There is probably a variant of it in Yiddish too.

  3. Does Uncertainty really exist? And for whom?

    I use probability all the time, but I know it is just a convenient tool to express my Degree of Knowledge or Ignorance.

    An event will happen or will not happen, so it is either 0% or 100%.

    Modern Physics and Quantum Mechanics may disagree, but I have not studied it and can't comment on it.