Sunday, December 11, 2011

Picking a Theory is Like Building a Boat at Sea


"We are like sailors who on the open sea must reconstruct their ship
 but are never able to start afresh from the bottom." 
Otto Neurath's analogy in the words of Willard V. Quine

Engineers, economists, social planners, security strategists, and others base their plans and decisions on theories. They often argue long and hard over which theory to use. Is it ever right to use a theory that we know is empirically wrong, especially if a true (or truer) theory is available? Why is it so difficult to pick a theory?

Let's consider two introductory examples.

You are an engineer designing a robot. You must calculate the forces needed to achieve specified motions of the robotic arms. You can base these calculations on either of two theories. One theory assumes that an object comes to rest unless a force acts upon it. Let's call this axiom A. The other theory assumes that an object moves at constant speed unless a force acts upon it. Let's call this axiom G. Axiom A agrees with observation: Nothing moves continuously without the exertion of force; an object will come to rest unless you keep pushing it. Axiom G contradicts all observation; no experiment illustrates the perpetual motion postulated by the axiom. If all else is the same, which theory should you choose?

Axiom A is Aristotle's law of inertia, which contributed little to the development of mechanical dynamics. Axiom G is Galileo's law of inertia: one of the most fruitful scientific ideas of all time. Why is an undemonstrable assertion - axiom G - a good starting point for a theory?

Consider another example.

You are an economist designing a market-based policy to induce firms to reduce pollution. You will use an economic theory to choose between policies. One theory assumes that firms face pure competition, meaning that no single firm can influence market prices. Another theory provides agent-based game-theoretic characterization of how firms interact (without colluding) by observing and responding to price behavior of other firms and of consumers.

Pure competition is a stylized idealization (like axiom G). Game theory is much more realistic (like axiom A), but may obscure essential patterns in its massive detail. Which theory should you use?

We will not address the question of how to choose a theory upon which to base a decision. We will focus on the question: why is theory selection so difficult? We will discuss four trade offs.

"Thanks to the negation sign, there are as many truths as falsehoods;
we just can't always be sure which are which." Willard V. Quine

The tension between right and right. The number of possible theories is infinite, and sometimes it's hard to separate the wheat from the chaff, as suggested by the quote from Quine. As an example, I have a book called A Modern Guide to Macroeconomics: An Introduction to Competing Schools of Thought by Snowdon, Vane and Wynarczyk. It's a wonderful overview of about a dozen theories developed by leading economic scholars, many of them Nobel Prize Laureates. The theories are all fundamentally different. They use different axioms and concepts and they compete for adoption by economists. These theories have been studied and tested upside down and backwards. However, economic processes are very complex and variable, and the various theories succeed in different ways or in different situations, so the jury is still out. The choice of a theory is no simple matter because many different theories can all seem right in one way or another.

"The fox knows many things, but the hedgehog knows one big thing." Archilochus

The fox-hedgehog tension. This aphorism by Archilochus metaphorically describes two types of theories (and two types of people). Fox-like theories are comprehensive and include all relevant aspects of the problem. Hedgehog-like theories, in contrast, skip the details and focus on essentials. Axiom A is fox-like because the complications of friction are acknowledged from the start. Axiom G is hedgehog-like because inertial resistance to change is acknowledged but the complications of friction are left for later. It is difficult to choose between these types of theories because it is difficult to balance comprehensiveness against essentialism. On the one hand, all relevant aspects of the problem should be considered. On the other hand, don't get bogged down in endless details. This fox-hedgehog tension can be managed by weighing the context, goals and implications of the decision. We won't expand on this idea since we're not considering how to choose a theory; we're only examining why it's a difficult choice. However, the idea of resolving this tension by goal-directed choice motivates the third tension.

"Beyond this island of meanings which in their own nature are true or false
lies the ocean of meanings to which truth and falsity are irrelevant." John Dewey

The truth-meaning tension. Theories are collections of statements like axioms A and G in our first example. Statements carry meaning, and statements can be either true or false. Truth and meaning are different. For instance, "Archilochus was a Japanese belly dancer" has meaning, but is not true. The quote from Dewey expresses the idea that "meaning" is a broader description of statements than "truth". All true statements mean something, but not all meaningful statements are true. That does not imply, however, that all untrue meaningful statements are false, as we will see.

We know the meanings of words and sentences from experience with language and life. A child learns the meanings of words - chair, mom, love, good, bad - by experience. Meanings are learned by pointing - this is a chair - and also by experiencing what it means to love or to be good or bad.

Truth is a different concept. John Dewey wrote that

"truths are but one class of meanings, namely, those in which a claim to verifiability by their consequences is an intrinsic part of their meaning. Beyond this island of meanings which in their own nature are true or false lies the ocean of meanings to which truth and falsity are irrelevant. We do not inquire whether Greek civilization was true or false, but we are immensely concerned to penetrate its meaning."

A true statement, in Dewey's sense, is one that can be confirmed by experience. Many statements are meaningful, even important and useful, but neither true nor false in this experimental sense. Axiom G is an example.

Our quest is to understand why the selection of a theory is difficult. Part of the challenge derives from the tension between meaning and truth. We select a theory for use in formulating and evaluating a plan or decision. The decision has implications: what would it mean to do this rather than that? Hence it is important that the meaning of the theory fit the context of the decision. Indeed, hedgehogs would say that getting the meaning and implication right is the essence of good decision making.

But what if a relevantly meaningful theory is unprovable or even false? Should we use a theory that is meaningful but not verifiable by experience? Should we use a meaningful theory that is even wrong? This quandary is related to the fox-hedgehog tension because the fox's theory is so full of true statements that its meaning may be obscured, while the hedgehog's bare-bones theory has clear relevance to the decision to be made, but may be either false or too idealized to be tested.

Galileo's axiom of inertia is an idealization that is unsupported by experience because friction can never be avoided. Axiom G assumes conditions that cannot be realized so the axiom can never be tested. Likewise, pure competition is an idealization that is rarely if ever encountered in practice. But these theories capture the essence of many situations. In practical terms, what it means to get the robotic arm from here to there is to apply net forces that overcome Galilean inertia. But actually designing a robot requires considering details of dissipative forces like friction. What it means to be a small business is that the market price of your product is beyond your control. But actually running a business requires following and reacting to prices in the store next door.

It is difficult to choose between a relevantly meaningful but unverifiable theory, and a true theory that is perhaps not quite what we mean.

The knowledge-ignorance tension. Recall that we are discussing theories in the service of decision-making by engineers, social scientists and others. A theory should facilitate the use of our knowledge and understanding. However, in some situations our ignorance is vast and our knowledge will grow. Hence a theory should also account for ignorance and be able to accommodate new knowledge.

Let's take an example from theories of decision. The independence axiom is fundamental in various decision theories, for instance in von Neumann-Morgenstern expected utility theory. It says that one's choices should be independent of irrelevant alternatives. Suppose you are offered the dinner choice between chicken and fish, and you choose chicken. The server returns a few minutes later saying that beef is also available. If you switch your choice from chicken to fish you are violating the independence axiom. You prefer beef less than both chicken and fish, so the beef option shouldn't alter the fish-chicken preference.

But let's suppose that when the server returned and mentioned beef, your physician advised you to reduce your cholesterol intake (so your preference for beef is lowest) which prompted your wife to say that you should eat fish at least twice a week because of vitamins in the oil. So you switch from chicken to fish. Beef is not chosen, but new information that resulted from introducing the irrelevant alternative has altered the chicken-fish preference.

One could argue for the independence axiom by saying that it applies only when all relevant information (like considerations of cholesterol and fish oil) are taken into account. On the other hand, one can argue against the independence axiom by saying that new relevant information quite often surfaces unexpectedly. The difficulty is to judge the extent to which ignorance and the emergence of new knowledge should be central in a decision theory.

Wrapping up. Theories express our knowledge and understanding about the unknown and confusing world. Knowledge begets knowledge. We use knowledge and understanding - that is, theory - in choosing a theory. The process is difficult because it's like building a boat on the open sea as Otto Neurath once said. 

3 comments:

  1. I heard once (maybe in Will Durant's "An outline of Philosophy" which I borrowed in tapes to listen to when I had a long drive) that Aristotle claimed that the number of teeth in a woman is different than that of a man. Aristotle, in contrast to many other Ancient Greeks, was a practical person not averse to observation and even experiment. I wonder if he did try to observe and counted the man's or the woman't teeth wrong, or if he never bothered to open their mouths and count the teeth in the first place. I have not read much Aristotle and don't know if he then came up with some theory to justify his incorrect observation or statement.

    ReplyDelete
  2. It is hard to pick a theory that is true but it is easy to pick one theory that is better than another without going into how it must be picked but by comparing theories on their own merits, not unlike the tensions mentioned. Truth versus meaning is internal versus external normativity and only the former can be tested. Fox versus hedgehog is validity for only a particular field or generalizable to all fields. So there can be true or meaningful hedgehogs and true or meaningful foxes. True hedgehogs are the most valuable to us and meaningful foxes the least, but in case that is all we have, we must use it to reconstruct the ship. Sounds like Noah's Ark doesn't it! Knowledge and not ignorance is how all theories develop into the same direction.

    ReplyDelete
  3. "Engineers, economists, social planners, security strategists, and others base their plans and decisions on theories." I would say that this statement is questionable. Engineers use formulas and various equations without being aware of the theories behind them. Social planners, security strategists (and politicians) base their plans and decisions mostly on intuition, interests, power or ego. It would be nice if their decisions will be based on theory, even not on a perfect one. However, there are also sophisticated decision makers, who are looking for a suitable theory that will allow them to justify their decisions.

    ReplyDelete